A non-commutative Priestley duality

نویسندگان

  • ANDREJ BAUER
  • KARIN CVETKO-VAH
چکیده

We prove that the category of left-handed skew distributive lattices with zero and proper homomorphisms is dually equivalent to a category of sheaves over local Priestley spaces. Our result thus provides a noncommutative version of classical Priestley duality for distributive lattices. The result also generalizes the recent development of Stone duality for skew Boolean algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dualities in Lattice Theory

In this note we prove several duality theorems in lattice theory. We also discuss the connection between spectral spaces and Priestley spaces, and interpret Priestley duality in terms of spectral spaces. The organization of this note is as follows. In the first section we collect appropriate definitions and basic results common to many of the various topics. The next four sections consider Birk...

متن کامل

FUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES

The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...

متن کامل

Priestley Style Duality for Distributive Meet-semilattices

We generalize Priestley duality for distributive lattices to a duality for distributive meet-semilattices. On the one hand, our generalized Priestley spaces are easier to work with than Celani’s DS-spaces, and are similar to Hansoul’s Priestley structures. On the other hand, our generalized Priestley morphisms are similar to Celani’s meet-relations and are more general than Hansoul’s morphisms....

متن کامل

Distributive lattices with strong endomorphism kernel property as direct sums

Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem  2.8}). We shall determine the structure of special elements (which are introduced after  Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...

متن کامل

Priestley duality for N4-lattices

We present a new Priestley-style topological duality for bounded N4-lattices, which are the algebraic counterpart of paraconsistent Nelson logic. Our duality differs from the existing one, due to Odintsov, in that we only rely on Esakia duality for Heyting algebras and not on the duality for De Morgan algebras of Cornish and Fowler. A major advantage of our approach is that for our topological ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012